jueves, 6 de febrero de 2014

3º ESO TECNOLOGÍAS. COLECCIÓN DE PROBLEMAS DE PALANCAS.

3º ESO TECNOLOGÍAS.  COLECCIÓN DE PROBLEMAS DE PALANCAS.

Elaborada por el profesor José Manuel Sánchez Herrera del IES La Isleta, en Las Palmas de Gran Canaria.

Se han realizado algunas modificaciones para adaptar los problemas a la nomenclatura que utilizamos.

PROBLEMAS DE PALANCAS.

LEY DE LA PALANCA:      FA∙ bA =   FR ∙ bR


Donde:   FA    es fuerza aplicada.
              bA    es el brazo de la fuerza aplicada.
              FR      es fuerza resistente.       
              bR     es el brazo de la fuerza resistente.



 1.- Una persona de 60Kg y otra de 40Kg de masa, están sentadas en un balancín de un parque, de forma que la primera lo está a 2m del punto de apoyo de la barra. ¿A qué distancia del punto de apoyo debe situarse la segunda persona para que el balancín esté en equilibrio. Dibujar el esquema (Solución 3m)

2.- Un balancín tiene 5m de longitud y en él se sientan dos personas una de 60Kg y otra de 40 Kg de masa. Dibujar el esquema, ¿qué tipo de palanca es?. Calcular ¿en qué posición debe colocarse el punto de apoyo de la persona que menos pesa para que exista equilibrio? (Solución: 3m)

3.- Un mecanismo para poner tapones manualmente a las botellas de vino es como se muestra en el esquema. Si la fuerza necesaria para introducir un tapón es de 50N ¿Qué tipo de palanca es? ¿Qué fuerza es preciso ejercer sobre el mango? (Solución 20N)
  4.- El mecanismo de la figura debe levantar el peso de 4Tm. ¿Qué tipo de palanca es? Calcular la fuerza que se debe ejercer en el émbolo para lograrlo. (Solución 156,8 KN)




  5.- Para levantar una carga de 400N, se aplica una fuerza de 200N utilizando para ello una palanca de 1er género. La longitud de la palanca es de 20m. Dibujar la palanca y calcular a qué distancia de la fuerza debemos colocar el punto de apoyo. (Solución: 13,3m)

6.- Calcular la longitud de una palanca de primer género con la que queremos levantar un peso de 500N, situado a 6m del punto de apoyo, para ello se aplica una fuerza de 200N. (Solución: 21m)

7.- ¿Que fuerza tendremos que aplicar a una palanca de primer género, si queremos levantar una carga de 25N situada a 70cm del punto de apoyo? La palanca tiene una longitud de 10m. Dibujar la misma. (Solución: 1,9N)

8.- Una palanca de tercer género de 75cm de longitud se mantiene en equilibrio cuando la fuerza aplicada vale 2N y la carga 1,6N. Dibujar la misma y hallar la distancia entre ambas fuerzas. (Solución: 15cm)

9.- En una palanca de 2º género aplicamos una fuerza de 800N y queremos levantar un peso de 1000N. La distancia entre ambas fuerzas es de 3m. Dibujar la misma y hallar la longitud de la palanca. (Solución: 15m)

10.- Con una palanca de 2º género de 10m de longitud, levantamos una carga de 1700N haciendo un esfuerzo de 700N. Dibujar la misma y hallar la distancia desde el peso hasta el punto de apoyo. (Solución: 4,1m)

11.- Utilizando una palanca de 3er género se levanta un peso de 300N haciendo una fuerza de 700N situada a 4m del punto de apoyo. Dibujar la misma y hallar la longitud de la palanca. (Solución: 9,3m)

12.- En una palanca de 1er género aplicamos una fuerza en el extremo de 700N y a 4m de esta aplicamos otra de 50N. Calcular la distancia desde la segunda fuerza aplicada hasta el punto de apoyo, si queremos levantar un peso de 1000N. La palanca mide 25m. Dibujar el sistema. (Solución: 10,4m)

13.- Una palanca de 40m de longitud, aplicamos en uno de sus extremos una fuerza de 1000N y a 7m del punto de apoyo otra de 120N: De esta forma podemos levantar una carga de 2400N en el otro extremo. Dibujar el sistema y hallar la distancia entre ambas fuerzas y la distancia a la que está situado el punto de apoyo de la carga. (Solución: a=21m // b=19m)

14.- Una palanca tiene 25m de longitud, aplicamos una fuerza de 1000N en uno de sus extremos y otra de 12N a 6m del punto de apoyo. De esta forma podemos levantar 3400N en el otro extremo. Calcular la distancia entre ambas fuerzas y la distancia a la que está situada la carga del punto de apoyo. Dibujar el sistema. (Solución: a=13,4m // b=11,6m)

15.- Con el siguiente sistema combinado de palancas se quiere vencer una fuerza una fuerza de 180N. Calcular la fuerza que hay que aplicar en la palanca inferior. (Solución: 20 N)



 16.-  Calcula la masa en Kg de escombros que se transportan en la carretilla. Dibuja el esquema de la palanca. De qué grado es. Indica donde se encuentra el centro de gravedad de la masa de escombros.




C. Ortega